Acta Crystallographica Section C
Crystal Structure

Communications

ISSN 0108-2701

[N, N^{\prime}-Bis(salicylidene)-2,2-dimethyl-1,3-propanediaminato]nickel(II) and [N, N^{\prime}-bis(salicylidene)-2,2-dimethyl-1,3-propanediaminato]copper(II)

Cengiz Arici, ${ }^{\text {a* }}$ Filiz Ercan, ${ }^{\text {a }}$ Raif Kurtaran ${ }^{\text {b }}$ and Orhan Atakol ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Engineering Physics, Hacettepe University, Beytepe 06532, Ankara, Turkey, and ${ }^{\mathbf{b}}$ Department of Chemistry, Ankara University, Tandog̃an 06100, Ankara, Turkey
Correspondence e-mail: arici@hacettepe.edu.tr

Received 26 March 2001
Accepted 15 May 2001
In the title compounds, $\left\{2,2^{\prime}\right.$-[2,2-dimethyl-1,3-propanediyl-bis(nitrilomethylidyne)]diphenolato- $\left.\kappa^{4} N, N^{\prime}, O, O^{\prime}\right\}$ nickel(II), $\left[\mathrm{Ni}\left(\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}\right)\right]$, and $\left\{2,2^{\prime}\right.$-[2,2-dimethyl-1,3-propanediyl-bis(nitrilomethylidyne)]diphenolato- $\left.\kappa^{4} N, N^{\prime}, O, O^{\prime}\right\} \operatorname{copper}(\mathrm{II})$, $\left[\mathrm{Cu}\left(\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}\right)\right]$, the $\mathrm{Ni}^{\mathrm{II}}$ and $\mathrm{Cu}^{\mathrm{II}}$ atoms are coordinated by two iminic N and two phenolic O atoms of the N, N^{\prime}-bis(salicyl-idene)-2,2-dimethyl-1,3-propanediaminate (SALPD ${ }^{2-}, \mathrm{C}_{17} \mathrm{H}_{16}-$ $\mathrm{N}_{2} \mathrm{O}_{2}{ }^{2-}$) ligand. The geometry of the coordination sphere is planar in the case of the $\mathrm{Ni}^{\mathrm{II}}$ complex and distorted towards tetrahedral for the $\mathrm{Cu}^{\mathrm{II}}$ complex. Both complexes have a cis configuration imposed by the chelate ligand. The dihedral angles between the $\mathrm{N} / \mathrm{Ni} / \mathrm{O}$ and $\mathrm{N} / \mathrm{Cu} / \mathrm{O}$ coordination planes are 17.20 (6) and $35.13(7)^{\circ}$, respectively.

Comment

The chemistry of metal complexes with Schiff base ligands and their applications have aroused considerable attention mainly because of their preparative accessibility, diversity and structural variability. For example, there has been interest in $\mathrm{Cu}^{\mathrm{II}}-$ imine-phenols because of their color isomerism (Yao et al., 1997) and the $\mathrm{Ni}^{\text {II }}$ complexes have been used to probe the structural and electronic consequences of small modifications of the ligand skeleton (Gomes et al., 1999). Nickel(II) and copper(II) complexes of diamine Schiff bases generally display square-planar coordination (Akhtar, 1981; Radha et al., 1985; Drew et al., 1985). We have synthesized $\mathrm{Ni}^{\mathrm{II}}-$ $\left[(\mathrm{SALPD})\left(\mathrm{CH}_{3}\right)_{2}\right]$, (I), and $\mathrm{Cu}^{\mathrm{II}}\left[(\mathrm{SALPD})\left(\mathrm{CH}_{3}\right)_{2}\right]$, (II), and report their structures here.

In both compounds, the structure consists of asymmetric monomers which have a monoclinic unit cell containing four molecules. In the structure of (I) (Fig. 1), the Ni atom has a square-planar coordination involving the two O and two N atoms of the tetradentate SALPD ${ }^{2-}$ ligand. The Ni atom is located $0.013(3) \AA$ from the best coordination plane
consisting of atoms $\mathrm{N} 1, \mathrm{~N} 2, \mathrm{O} 1$ and O 2 , and the dihedral angle between the two $\mathrm{Ni} / \mathrm{N} / \mathrm{O}$ planes is $17.20(6)^{\circ}$.

(I) $M=\mathrm{Ni}$
(II) $M=\mathrm{Cu}$

Complexes of (N, N^{\prime}-trimethylenedisalicylideneaminato)nickel(II), $[\mathrm{Ni}($ salpd $)]$, and (N, N^{\prime}-trimethylenedisalicylideneaminato)copper(II), $[\mathrm{Cu}($ salpd $)]$ (Drew et al., 1985), show similar structures to the title compounds apart from the methyl groups. Comparison of the $\mathrm{Ni}-\mathrm{N}$ and $\mathrm{Ni}-\mathrm{O}$ bond distances, and the $\mathrm{O}-\mathrm{Ni}-\mathrm{O}$ angles, of the present work (Table 1) with similar values in [Ni (salpd)] show them to be very similar. In the present work, the $\mathrm{Ni}-\mathrm{N} 1, \mathrm{Ni}-\mathrm{N} 2, \mathrm{Ni}-$ O 1 and $\mathrm{Ni}-\mathrm{O} 2$ bond distances are 1.8764 (17), 1.8660 (17), 1.8463 (14) and 1.8461 (15) \AA, respectively. In [Ni (salpd)], the $\mathrm{Ni}-\mathrm{N}$ and $\mathrm{Ni}-\mathrm{O}$ distances are 1.901 (4) and 1.845 (3) \AA,

Figure 1
PLATON (Spek, 2000) drawings of (a) compound (I) and (b) compound (II). H atoms are shown as small circles of arbitrary radii and ellipsoids are shown at the 50% probability level.
respectively. The $\mathrm{O} 1-\mathrm{Ni}-\mathrm{O} 2$ angle of 83.91 (7) $)^{\circ}$ in (I) is greater than the value of $78.31(13)^{\circ}$ in [$\mathrm{Ni}($ salpd $\left.)\right]$.

In the structure of (II), the Cu atom is coordinated in a distorted planar coordination geometry by two $\mathrm{N}[\mathrm{Cu}-\mathrm{N} 1$ 1.929 (2) \AA and $\mathrm{Cu}-\mathrm{N} 21.9518$ (19) \AA] and two O atoms $[\mathrm{Cu}-\mathrm{O} 11.8967$ (17) \AA and $\mathrm{Cu}-\mathrm{O} 21.8956$ (17) \AA] of the imine-phenol ligand (Table 2). The tetrahedral distortion between the $\mathrm{Cu} / \mathrm{N} / \mathrm{O}$ planes is 35.13 (7) ${ }^{\circ}$. Similar distortions are found in the literature for $\mathrm{Cu}^{\mathrm{II}}$ structures. This angle between planes can be compared with the value of $21.0(1)^{\circ}$ for $[\mathrm{Cu}($ salpd $)]$ and $42.7(1)^{\circ}$ for [N, N^{\prime}-bis(salicylidene)- $1,4-$ diiminobutane]copper(II) (Yao et al., 1997).

The SALPD ${ }^{2-}$ ligand is not planar in either compound. The chelate ring composed of atoms $M(\mathrm{Ni}$ or Cu$), \mathrm{N} 1, \mathrm{C} 8, \mathrm{C} 9, \mathrm{C} 10$ and N 2 has a distorted boat conformation. The distances of the two para-positioned boat atoms, M and C9, from the best plane of the six atoms are 0.0001 (3) and 0.06 (2) \AA for Cu , and 0.0036 (3) and 0.155 (2) \AA for Ni , respectively.

Experimental

The ligand N, N^{\prime}-bis(salicylidene)-2,2-dimethyl-1,3-propanediamine $(0.620 \mathrm{~g}, 0.002 \mathrm{~mol})$ was dissolved in a hot dioxane-MeOH mixture (1:1, 50 ml). To this solution were added triethylamine (1 ml) and a solution of $\mathrm{NiCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.476 \mathrm{~g}, 0.002 \mathrm{~mol})$ in hot $\mathrm{MeOH}(30 \mathrm{ml})$ for the preparation of the Ni complex, and a solution of $\mathrm{CuCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ $(0.340 \mathrm{~g}, 0.002 \mathrm{~mol})$ in hot $\mathrm{MeOH}(30 \mathrm{ml})$ for the preparation of the Cu complex. The mixtures were set aside for 2 d and the dark-brown crystals of the nickel(II) complex and dark-green crystals of the copper(II) complex which formed were filtered off and dried in an oven at 373 K .

Compound (I)

Crystal data

$\left[\mathrm{Ni}\left(\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}\right)\right]$
$M_{r}=367.08$
Monoclinic, $P 2_{1} / n$
$a=9.9329$ (12) A
$b=15.8778$ (11) \AA
$c=11.8793$ (10) \AA
$\beta=112.200(3)^{\circ}$
$V=1734.6$ (3) \AA^{3}
$Z=4$
$D_{x}=1.406 \mathrm{Mg} \mathrm{m}^{-3}$
Cu $K \alpha$ radiation
Cell parameters from 25
reflections
$\theta=4.9-74.2^{\circ}$
$\mu=1.72 \mathrm{~mm}^{-1}$
$T=301(2) \mathrm{K}$
Prism, dark brown
$0.35 \times 0.30 \times 0.25 \mathrm{~mm}$

Data collection

CAD-4 EXPRESS diffractometer $\omega / 2 \theta$ scans
Absorption correction: empirical via ψ scans (Fair, 1990)
$T_{\text {min }}=0.585, T_{\text {max }}=0.673$
3704 measured reflections
3503 independent reflections
3058 reflections with $I>2 \sigma(I)$

$$
\begin{aligned}
& R_{\text {int }}=0.036 \\
& \theta_{\max }=74.2^{\circ} \\
& h=-12 \rightarrow 0 \\
& k=-19 \rightarrow 0 \\
& l=-13 \rightarrow 14 \\
& 3 \text { standard reflections } \\
& \quad \text { frequency: } 120 \text { min } \\
& \quad \text { intensity decay: } 2.2 \%
\end{aligned}
$$

Refinement

Refinement on F^{2}
$R(F)=0.036$
$w R\left(F^{2}\right)=0.106$
$S=1.01$
3503 reflections
218 parameters
H -atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0548 P)^{2}\right. \\
& \quad \quad+0.6415 P] \\
& \quad \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.29 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.28 \mathrm{e} \AA^{-3} \\
& \text { Extinction correction: Larson } \\
& \quad(1970) \\
& \text { Extinction coefficient: } 0.0072
\end{aligned}
$$

Table 1
Selected geometric parameters ($\AA,^{\circ}$) for (I).

$\mathrm{Ni}-\mathrm{N} 1$	$1.8764(17)$	$\mathrm{Ni}-\mathrm{O} 2$	$1.8461(15)$
$\mathrm{Ni}-\mathrm{N} 2$	$1.8660(17)$	$\mathrm{Ni}-\mathrm{O} 1$	$1.8463(14)$
$\mathrm{O} 2-\mathrm{Ni}-\mathrm{O} 1-\mathrm{C} 1$	$175.94(19)$	$\mathrm{O} 1-\mathrm{Ni}-\mathrm{O} 2-\mathrm{C} 19$	$-162.7(2)$
$\mathrm{N} 2-\mathrm{Ni}-\mathrm{O} 1-\mathrm{C} 1$	$-109.6(3)$	$\mathrm{N} 2-\mathrm{Ni}-\mathrm{O} 2-\mathrm{C} 19$	$29.6(2)$
$\mathrm{N} 1-\mathrm{Ni}-\mathrm{O} 1-\mathrm{C} 1$	$9.43(19)$	$\mathrm{N} 1-\mathrm{Ni}-\mathrm{O} 2-\mathrm{C} 19$	$-78.4(4)$

Compound (II)

Crystal data

$\begin{array}{ll}{\left[\mathrm{Cu}\left(\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}\right)\right]} & D_{x}=1.407 \mathrm{Mg} \mathrm{m}^{-3} \\ M_{r}=371.91 & \mathrm{Cu} \mathrm{K} \mathrm{\alpha} \mathrm{radiation}\end{array}$
$M_{r}=371.91$
Monoclinic, $P 2_{1} / n$
$a=9.7452(12) \AA$
$b=17.2276$ (14) A
$c=11.3606$ (10) \AA
$\beta=112.981$ (3) ${ }^{\circ}$
$V=1755.9(3) \AA^{3}$
$Z=4$
Cell parameters from 15 reflections
$\theta=5.0-74.2^{\circ}$
$\mu=1.86 \mathrm{~mm}^{-1}$
$T=301$ (2) K
Prism, dark green
$0.30 \times 0.20 \times 0.20 \mathrm{~mm}$

Data collection

CAD-4 EXPRESS diffractomete
$\omega / 2 \theta$ scans
Absorption correction: empirica
via ψ scans (Fair, 1990)
$T_{\text {min }}=0.606, T_{\text {max }}=0.707$
3591 measured reflections
3419 independent reflections
2982 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.036$
$R_{\text {int }}=74.2^{\circ}$
$\theta_{\text {max }}$
$h=-11 \rightarrow 12$
$k=0 \rightarrow 21$
$l=-14 \rightarrow 0$
3 standard reflections
frequency: 120 min
intensity decay: 1.3%

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0581 P)^{2}\right. \\
& \quad+0.8826 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.47 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.28 \mathrm{e}^{-3}
\end{aligned}
$$

$R(F)=0.038$
$w R\left(F^{2}\right)=0.106$
$S=1.04$
3419 reflections
218 parameters
H -atom parameters constrained

Table 2
Selected geometric parameters $\left(\AA{ }^{\circ},{ }^{\circ}\right)$ for (II).

$\mathrm{Cu}-\mathrm{O} 2$	$1.8956(17)$	$\mathrm{Cu}-\mathrm{N} 1$	$1.929(2)$
$\mathrm{Cu}-\mathrm{O} 1$	$1.8967(17)$	$\mathrm{Cu}-\mathrm{N} 2$	$1.9518(19)$
$\mathrm{N} 2-\mathrm{Cu}-\mathrm{N} 1-\mathrm{C} 7$	$147.9(2)$	$\mathrm{O} 2-\mathrm{Cu}-\mathrm{N} 2-\mathrm{C} 10$	$174.41(16)$
$\mathrm{O} 2-\mathrm{Cu}-\mathrm{N} 1-\mathrm{C} 8$	$68.8(3)$	$\mathrm{O} 1-\mathrm{Cu}-\mathrm{N} 2-\mathrm{C} 10$	$74.2(2)$
$\mathrm{O} 1-\mathrm{Cu}-\mathrm{N} 1-\mathrm{C} 8$	$170.30(18)$	$\mathrm{N} 1-\mathrm{Cu}-\mathrm{N} 2-\mathrm{C} 10$	$-30.13(17)$
$\mathrm{N} 2-\mathrm{Cu}-\mathrm{N} 1-\mathrm{C} 8$	$-34.88(19)$	$\mathrm{O} 1-\mathrm{Cu}-\mathrm{O} 2-\mathrm{C} 19$	$153.4(2)$
$\mathrm{N} 1-\mathrm{Cu}-\mathrm{N} 2-\mathrm{C} 13$	$162.3(2)$	$\mathrm{N} 1-\mathrm{Cu}-\mathrm{O} 2-\mathrm{C} 19$	$-104.2(3)$

PLATON (Spek, 2000); software used to prepare material for publication: SHELXL97.

The authors wish to acknowledge the purchase of the CAD-4 diffractometer under grant DPT/TBAG1 of the Scientific and Technical Research Council of Turkey.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BR1331). Services for accessing these data are described at the back of the journal.

References

Akhtar, F. (1981). Acta Cryst. B37, 84-88.
Drew, M. G. B., Prasad, R. N. \& Sharma, R. P. (1985). Acta Cryst. C41, 17551758.

Enraf-Nonius (1993). CAD-4 EXPRESS. Version 1.1. Enraf-Nonius, Delft, The Netherlands.
Fair, C. K. (1990). MolEN. Enraf-Nonius, Delft, The Netherlands.
Gomes, L., Pereira, E. \& Castro, B. (1999). Acta Cryst. C55, 1061-1063.
Larson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall \& C. P. Huber, pp. 291-294. Copenhagen: Munksgaard.
Radha, A., Seshasayee, M., Ramalingam, K. \& Aravamudan, G. (1985). Acta Cryst. C41, 1169-1171.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2000). PLATON2000. University of Utrecht, The Netherlands. Yao, H., Lo, J., Chen, B. \& Lu, T. (1997). Acta Cryst. C53, 1012-1013.

